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The equations used to describe the diffuse double layer in the Eigen–Wicke model of ionic
liquids are presented. They are then used to estimate the potential drop across the diffuse
layer and its differential capacity for two representative systems which contain monovalent
ions of equal diameter. The first one is molten RbCl at 750 °C. The second system is a room
temperature ionic liquid with typical parameters to describe its properties. The results of the
calculations are compared with the available experimental data. It is concluded that the
Eigen–Wicke model does not consider the change in local potential experienced by a given
ion in the ionic liquid. The need for Monte Carlo data for the diffuse double layer in molten
salt systems is emphasized.
Keywords: Electrochemistry; Monte Carlo method; Diffuse double layer; Molten salts.

Because of their potential application in batteries and electrochemical ca-
pacitors, ionic liquids have attracted considerable attention in recent
years1. Kornyshev2 discussed double layer properties in these systems using
Fermi statistics to describe the diffuse layer. An important conclusion of
this work is that the diffuse layer capacity has a maximum at the point of
zero charge (pzc) in dense systems rather than the minimum which is pre-
dicted by Gouy–Chapman (GC) theory for electrolyte solutions in polar sol-
vents3. However, at low densities, the diffuse layer capacity has a minimum
at the pzc surrounded by maxima at positive and negative rational poten-
tials2.

The Kornyshev treatment of the diffuse layer in ionic liquids is based on
the Eigen and Wicke theory for concentrated electrolyte solutions4. How-
ever, the Eigen–Wicke (EW) approach is not the only method for consider-
ing ion size effects in the diffuse double layer. Other recent contributions
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to this topic have been the Fawcett–Smagala model5,6 which is based on the
hypernetted chain integral equation, and the modified Poisson–Boltzmann
theory of Outhwaite and Bhuiyan7,8.

The purpose of the present paper is to examine the predictions of the EW
model for an ionic liquid. Attention is focussed on the predictions of this
model with respect to the classical GC theory, especially the question of the
extrema in the diffuse layer capacity. The discussion in the present paper is
limited to restricted systems, i.e., systems in which all ions have the same
radius. Approximate examples on the basis of Shannon and Prewitt radii are
the monoatomic systems, NaF and RbCl, at very high temperatures. Exam-
ples of room temperature systems which can be considered restricted are
harder to find. Nevertheless the properties of such a system are also consid-
ered. Finally, the discussion in this paper is limited to 1:1 electrolyte sys-
tems.

THEORY

An important feature of an ionic liquid is the vacancies which provide
ionic mobility. If the component ions are represented as charged hard
spheres, then a significant fraction of the volume is empty because of the
way that the spheres are packed. The volume of a sphere of radius r is 4πr3/3
and that of a box containing that sphere is 8r3. It follows that 52% of the
volume is occupied if the spheres are not close packed. When the spheres
all have the same radius and are close packed, the fraction of the volume
which is occupied rises to 74%. Real systems with equally sized ions proba-
bly have volume occupation fractions between these limits.

Consider an ionic liquid which is made up of cations, anions and vacan-
cies. The sizes of the cation and anion are the same, i.e., they have equal
radii ri. A vacancy is formed by removing a cation and an anion from the
system, so that the volume of a vacancy is twice that of either a cation or
an anion. Thus, the volume of the system is given by

V = (c+0 + c–0)Vi + 2cv0Vi + Vex (1)

where Vi is the volume of an ion, and c+0, c–0 and cv0 are the concentrations
in the bulk of cations, anions and vacancies, respectively, and Vex is the
excluded volume arising from the way the hard spheres are packed. The
volume of a single ion is 4πri

3/3, so that the volume of one mole of electro-
lyte is given by
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Ve =
8

3

3πN rL i (2)

where NL is the Avogadro constant. It follows that the hypothetical maxi-
mum concentration of the electrolyte is

cm =
3

8 3πN rL i

. (3)

The ion density is given by

ρ = 2NLce = 2NLc+0 = 2NLc–0 . (4)

The fraction of the volume occupied by the ions is

γ
πρ

= =
4 23r c

c
i e

m3
. (5)

As shown by Kornyshev, the parameter γ plays an important role in deter-
mining diffuse double layer properties.

Expressions are now given for the electrochemical potentials of the ions
in the diffuse layer following the treatment of concentrated electrolyte so-
lutions by Eigen and Wicke4. In the case that the ions are assumed to be
hard spheres which cannot penetrate one another, their electrochemical
potentials are

~ ln – ln( – )–µ µ φ+ + + += + − +0 RT c RT c c c Fm (6)

and

~ ln – ln( – ) –– – – –µ µ φ= + −+
0 RT c RT c c c Fm . (7)

Here µ+
0 and µ–

0 are the standard chemical potentials of the cation and
anion, respectively, and φ is the local electrostatic potential. The concentra-
tions c+ and c– refer to the local ion concentrations in the diffuse layer. The
third term on the right hand side of these expressions accounts for the
change in Gibbs energy with degree of filling of the available sites in the
diffuse layer.
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Equating the electrochemical potential of a given ion to its value in the
bulk of the solution, one eventually obtains the following expression9 for
the concentration of ion i

ci =
c ze iexp( )

( cosh )

−
− +

ϕ
γ γ ϕ1

(8)

where ϕ = Fφ/RT is the dimensionless potential. This is the Fermi equation
for the ionic concentrations in the diffuse layer. When γ = 0, it reduces to
the corresponding Boltzmann equation.

The equation giving the potential drop across the diffuse layer2,9 is

ϕ η
γ

d = −









−2
2 1

2
1

2 1 2

sinh
exp( / )

/
E

(9)

where E = σm/AGC is the dimensionless electrode field and AGC = (2RTε0εsce)
1/2

is the GC constant3. εs is the relative permittivity of the molten salt and
ε0 is the permittivity of free space.

The differential capacity of the diffuse layer Cd is given by2,9

Cd =
C

E
d0

d

d

sinh

[ sinh ( / )]

ϕ
γ ϕ1 2 22+

(10)

where Cd0 = FAGC/RT is the diffuse layer capacity at the pzc. These equa-
tions are essentially the same as those derived earlier by Kornyshev2.

Keeping in mind the fact that one observes the total capacity of the dou-
ble layer experimentally, it is important to consider the contribution of the
inner layer Ci. In aqueous electrolyte solutions the inner layer contribution
is dominant under most experimental conditions. Furthermore, potential
dependence of Ci reflects the properties of the solvent in the absence of
ionic specific adsorption3. The situation is very different in an ionic liquid.
In the absence of specific adsorption, the inner layer capacity is a constant

Ci =
ε ε0 s

ir
. (11)

The relative permittivity of room temperature ionic liquids falls in the
range from 6 to 16 (ref.10). Assuming that the relative permittivity is 12 and
the ionic radius 0.5 nm, the value of Ci is 21.3 µF cm–2. The contribution of
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the diffuse layer to the total observed capacity will only be important when
it is smaller or of the same order of magnitude as that of the inner layer.

RESULTS AND DISCUSSION

The predictions of the EW model are now examined for the diffuse double
layer in two ionic liquids. The first is a high temperature system, namely
RbCl, in which the ions have nearly equal radii (165 pm) on the Shannon
and Prewitt scale3. In fact, the interatomic distance between the two ions
on the basis of X-ray data is 328.5 pm. RbCl melts at 718 °C and has a den-
sity of 2.088 g cm–3 at 750 °C. Assuming an ionic diameter of 328.5 pm, the
fraction of the volume occupied in molten RbCl, γ, at 750 °C is 0.393. The
dielectric constant for this system is 2.75 (ref.10).

Values of the potential drop across the diffuse layer φd estimated for the
RbCl system at 750 °C according to the EW model are shown in Fig. 1. The
values estimated using GC theory are also shown. It is apparent that the
EW results are considerably larger than the GC values for higher charges. In
fact, it was shown earlier9 that φd estimated by the EW model is always
larger than φd(GC) by expanding Eq. (8) to obtain an infinite series in
φd(GC). In the case of concentrated 1:1 electrolytes in water, the EW esti-
mates of φd were significantly different than Monte Carlo (MC) results. This
was attributed to the fact that the EW model is a mean field theory which
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FIG. 1
Potential drop across the diffuse layer φd plotted against the electrode charge density σm for
molten RbCl at 750 °C. The results of the Eigen–Wicke model are designated by (�) and the
solid curve shows the results from Gouy–Chapman theory



does not consider the change in the local potential due to the ionic envi-
ronment. Clearly MC data should be obtained for the present conditions.
However, it is clear from previous MC studies9 that φd(MC) falls below
φd(GC).

The differential capacity of the diffuse layer Cd estimated by the EW
model for the RbCl system is shown in Fig. 2. The interesting result is that
a maximum is found in Cd at the pzc. In fact, the estimates of Cd by GC
theory are very different showing a much larger magnitude for higher
charges and a minimum at the pzc. The value of the inner layer capacity Ci
for this system is 14.82 µF cm–2. Thus, one may estimate the total capacity
of the double layer using the relationship

C
C C

C C
=

+
i d

i d

. (12)

As the inner layer capacity is small, the variation in the total capacity
with charge density is also small, falling from 12.8 at the pzc to 11.5 at
40 µC cm–2 (see Fig. 2). Finally, the diffuse layer capacity for this system fol-
lows the predictions of Kornyshev2 for an ionic liquid with γ > 1/3.
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FIG. 2
Differential capacity of the diffuse layer Cd (�) and the total capacity (�) plotted against the
electrode charge density σm for molten RbCl at 750 °C. The diffuse layer capacity was obtained
from the Eigen–Wicke model (Eq. (10)) and the total capacity from Eqs (11) and (12). The solid
curve shows the results from Gouy–Chapman theory for the diffuse layer capacity



The second ionic liquid considered is a room temperature system. Singh
and Kumar11 have summarized the properties of various imidazolium room
temperature ionic liquids (RTILs). The cation in the system considered is
1-ethyl-3-methylimidazolium and the anion tetrafluoroborate (EtMeIMBF4).
The molecular volume of the system is 0.229 nm3. Assuming that the vol-
ume of the cation is equal to that of the anion, and that 50% of the volume
is empty (γ = 0.5), each ion occupies 0.5725 nm3. This corresponds to an
ionic radius of 239 pm. The concentration of the RTIL calculated from its
density is 6.47 mol l–1. Finally the dielectric constant of the system is 15.0
(ref.11).

Values of the potential drop in the diffuse layer φd estimated by the EW
model are shown as a function of electrode charge density in Fig. 3. φd is
much larger than the GC value for higher charges reaching close to 0.5 V
for a charge density of 40 µC cm–2 on the electrode. As pointed out above,
the EW results are suspect because the model does not consider the effect of
the ionic environment on the local potential. MC data for this system are
expected to fall below the GC results. Data for the differential capacity of
the diffuse layer are shown in Fig. 4. The RTIL also has a maximum in Cd at
the pzc. The predictions of GC theory for Cd are much larger and are not
shown for the entire range of charge densities for which calculations were
carrried out. In assessing the above results it should be kept in mind that
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FIG. 3
As in Fig. 1 but for a room temperature ionic liquid characterized by an ionic radius ri =
239 pm and a dielectric constant εs = 15 coressponding to 1-ethyl-3-methylimidazolium tetra-
fluoroborate



the cation in the system is only approximately spherical. In fact, for most
imidazolium electrolytes, the cation is larger than the anion. Under these
circumstances the electrolyte cannot be considered to be restricted. A
method of treating unrestricted systems at the GC level has been described
by Valleau and Torrie12.

Some capacity data have been reported recently for RTILs 13–16. In the case
of EtMeIMBF4 (ref.13), the capacity at the pzc is ~13 µF cm–2, i.e., much
smaller than the value estimated here. In experiments reported by these
authors13,14 the RTILs were saturated with nitrogen which may play some
role in determining the interfacial capacity. Measurement of electro-
capillary curves at a dropping mercury electrode in this system17 showed
that the curve is approximately parabolic confirming that the size of the
two ions is approximately equal. Data for other RTILs with larger cations
are clearly not parabolic17.

The original work of Kornyshev2 has been extended in an interesting
manner by Fedorov and Kornyshev18,19. Using molecular dynamic simula-
tions, they showed that the capacity is significantly overestimated when
the diffuse layer component is estimated using Eq. (10). They attributed
this result to the fact that the EW model does not treat the ionic atmo-
sphere problem correctly. It is interesting that such a correction could ac-
count for the fact that the capacity at the pzc observed by Ohsaka et al.13

is much smaller than predicted for the case of EtMeImBF4.
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FIG. 4
As in Fig. 2 but for a room temperature ionic liquid characterized by an ionic radius ri =
239 pm and a dielectric constant εs = 15



In a recent paper, Lamperski et al.20 have described MC results for a wide
range of restricted systems including RTILs. They used modified Poisson–
Boltzmann theory to describe the transition between systems which have
a minimum on the differential capacity curve at the pzc, and those which
have a maximum. Their results covered a range of reduced densities ρ* from
0.15 to 0.45 where the reduced density is defined as

ρ* = 8ρri
3 . (13)

The systems considered here have very different reduced densities, namely
0.74 in the case of molten RbCl, and 0.11 in the case of the RTIL. The fact
that a maximum is found in the value of the capacity at the pzc for RbCl
appears to be in agreement with results of these authors. However, they
predict a minimum for the RTIL on the basis of its low reduced density. It is
clear from Eq. (10) that the maximum appears in our calculation because of
the large value assumed for γ. Expanding the exponential terms in the hy-
perbolic functions in terms of the first term in their series expansion, one
obtains the following expression for the dimensionless diffuse layer capac-
ity in the vicinity of the pzc

Y
C

C E
d

d

d0

d

d
= =

+
ϕ

γ ϕ[ ( ) / ]1 22
. (14)

When γ = 0, one obtains the GC result which is Yd = ϕd/E. Since ϕd is equal
to or larger in magnitude than E for a given value of E, the dimensionless
capacity Yd increases from its value of unity at the pzc, and a minimum is
found at the pzc. However, when γ is large, as in the case in a RTIL, the de-
nominator in Eq. (14) is always larger than the numerator and a maximum
is found in the capacity against charge density curve. Only for very small
values of γ is a minimum found at the pzc in the diffuse layer capacity, the
exact transition point depending on the value of ϕd. The role of empty
space in the modified Poisson–Boltzmann theory used by Lamperski et al.20

does not appear explicitly in their equations.
It is clear from the present study that more MC simulations should be

carried out for systems with properties similar to those considered here.
Then it should be possible to develop an improved model for the diffuse
double layer in systems with high ion densities which goes beyond the
mean field approach used here. The availability of experimental double
layer data for RTILs makes work in this direction more rewarding.
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